Troupe programming language user guide*

April 6, 2022

*Please send your comments and requests for clarifications tojaslan@cs.au.dk

aslan@cs.au.dk

CONTENTS

{1 Introduction to Troupe| 4
1.1 Background and influence| 4
[L2 Tntendedaudiencel 4

2 System architecture| 4
2.1 Troupe architecture| 4
2.2 Tag-based label model| 5

3 Basic features| 6
3.1 A minimal Troupe program|. 6
[3.2 Overview of the basic language|. 6
3.3 Typesandvalues| 6
[3.4 Basicoperations|. e 7
B.5 _Thread-Tocalcontrol flow] 7

[3.5.1 Ifexpressions|. e 7
[3.5.2 Caseexpressions| e 7
[3.5.3 Letexpressions| 8
3.5.4 Function declarations|. o000 8
B _LABIames] . . « o o v oot e e e e 8
3.7 ConcurrenCy|. e e e e e 9
[3.7.1 Spawning processes| 9
[3.7.2 Sending and receiving messages| 9
[3.7.3 Example: recetve witha timeout| 10
[3.7.4 Example: updateable service| oo 10
[3.8 Debugging concurrent programs| 11

4__Information flow control 1
4.1~ Privileged operations and authority| 12
4.2 Monitoring for informationflow| oL oL, 12
|4.3 Declassification and progress-sensitivity| 14

[4.3.1 Example with attenuation of authority| 14
432 Basicdeclassificationl.o 14
{4.3.3 Declassification of the blocking level| 15
|4.4 Information flow control with I/O primitives| 16
“4.4.1 Generalized receive and mailbox clearancesl 16

IS Networking| 17

[5.1 Networkidentity| 17
[5.1.1 Registering and looking up processes| 17
BIZATGSES . . - o o oo e e 18

5.2 Nodetrustlevelsl 18

5.3 Remotespawning| L 18

[5.4 Information flow monitoring and attenuation|. 18

A" Language reference| 19
[A.1 Built-inexpressions|o 19

ATT advl . . oot 19

[A.1.3 authority| e 19
[A.l1.4 declassify| 19
AIS exXitl . o oot 20
[A.1.6 getTime| o . e 20
[A.1.7 dnputLine| 20
ATL8 Towermboxl 20
A.19 mkuuidl 21
ATI0O nodel oot 21
[A.T.IT pinipop| o v 21
[A.1.12 pinipush{. e 21
[A.1.13 pinipushto| 21
.................................... 22
[A.1.15 printWithLabels|. 22
[A116 raiseTrust| 22
ATLI7 raisemboxl 22
AII8andom - - - - v v ovo ot e e e 22
[ALT9 receivel e 23
[A.1.20 register|. e 23

N 2 23
[AL22 sandboxl 23
AT23SelE] . o ot o 24
.................................... 24
[A.1.25 _setProcessDebuggingName| 24

A O . 24

A 127 spawn|. 24
AL28 raisedTol. o o i 25
A.1.20 whereis| 25
B__Useful standard Iibraries| 25
B.1 Library declassifyutil| 25
[B.2 Library lists|. 26
|C Installation and configuration| 27
IC.1 Installation] 27
|C.2 Configuring network identifiers|. o o L. 27
[C.2.1 'Testing your network identifier (optional)| 27

1 INTRODUCTION TO TROUPE

Troupe is a programming language for concurrent and distributed programming with dynamic
information flow control. Troupe is a research language, and as such is intended as a playground
for research in information flow control.

1.1 BACKGROUND AND INFLUENCE

The design of Troupe is influenced by a number of programming languages and systems. With
respect to security, our design draws heavily on the systems such as Fabric/Jif, LIO, and FLAM.
With respect to concurrency, the design draws on the systems such as Erlang, Cloud Haskell, and
Concurrent ML. Finally, our syntax is SML-like.

1.2 INTENDED AUDIENCE

This guide is intended for researchers and graduate-level studentsﬂ interested in Troupe. We
assume that the reader is familiar with basic functional programming and the core concepts of
language-based information flow control such as noninterference.

2 SYSTEM ARCHITECTURE

This section describes the basic architecture of the Troupe system and an overview of the pro-
gramming model.

2.1 TROUPE ARCHITECTURE

Two key concepts in Troupe’s architecture are processes and nodes. A process is the primary
unit of computation. Processes are lightweight and communicate with each other using message
passing. Troupe processes run on Troupe nodes. A node is the primary unit of trust and corre-
sponds to an instance of the Troupe runtime. Each node has a unique network identifier, and all
communication between nodes is point-to-point encrypted using standard techniques.

To enforce information flow control in a decentralized fashion, Troupe combines the notions of
standard security levels and frust between nodes. There are no special requirements on the un-
derlying label model other than the standard requirements of the distinguished bottom and top
elements, denoted 1 and T, operators for the least upper bound and the greatest lower bound,
denoted LI and I respectively, and the security ordering C.

Troupe nodes decide for themselves how much they trust other nodes. Trust is specified via secu-
rity levels. Every node fully trusts itself, corresponding to trust level T. Trust levels of selected
few nodes are specified through runtime configuration. All other nodes have trust level L. Such
nodes are assumed to perform no security monitoring on their end. In particular, nodes that do not
run Troupe runtime also have trust level | (communication with such nodes is possible for as long
as they adhere to the serialization protocol). When communicating with | -trusted nodes, all data

"You have the authors’ sympathies if your instructor makes you read this.

()
N

Scheduler

Networking runtime

Node A

ONOLrnONO

Node B Node C

Figure 1: Nodes and processes in Troupe. The zigzagged line on the incoming message corre-
sponds to message attenuation, the dashed line on the outgoing message corresponds to checking
that the recipient is trusted to receive the message.

from received them is treated as public (i.e., confidentiality level L) and no confidential data can
be sent to them.

In general, when node n; trusts node ns up to level £ it means:
1. only data labeled up to ¢ is sent from n; to ng, and
2. data received from no by n; is attenuated to be at most /.

The first item prevents sending sensitive information to nodes that are not trusted to protect it. The
second item weakens security labels of untrusted nodes.

We note that trust between nodes may be asymmetric, but is implicitly transitive. Trust should also
not be conflated with integrity — in the current system we only focus on the confidentiality.

Figure [I] illustrates three Troupe nodes, each running a few processes. The arrows in the fig-
ure correspond to the messages between processes. Messages within each node are delivered to
processes directly, whereas messages between nodes are subject to inspection by the networking
runtime based on the trust levels.

2.2 TAG-BASED LABEL MODEL

The current version of Troupe uses a simple tag-based label model. Tags are abstract identifiers,
e.g., alice, bob, secret, that specify confidentiality restrictions on data. A security level is a
set of tags, e.g., ‘{alice, bob}‘, or ‘{alice,bob, charlie}‘. The more tags there are in the
level the more restrictive is the data. For example, the level ‘{alice, bob}" is less restrictive than
‘{alice, bob, charlie}‘. The least restrictive level is the empty set level ‘{}‘. When two levels
are ordered we write /1 C /5 to say that level ¢ is as restrictive as /1.

3 BASIC FEATURES

3.1 A MINIMAL TROUPE PROGRAM

We start with an example of a small Troupe program that returns number 42 as its result.
42

This program can be compiled, executed, and inspected for the return value using the following
sequence of shell commands.

$ $TROUPE/bin/troupec program.trp -o out.js
$ $TROUPE/rt/troupe out.js --localonly

main thread finished with value: 420{}%{}

The first command here invokes the Troupe compiler and specifies the generated output file to be
out/program. js. The second command invokes the nodejs runtime on the generated file. Note
--localonly flag that prevents the runtime from initializing the network layer — we discuss the
network layer in Section[5] Troupe installation also includes a shell script 1ocal.sh that combines
the above two tasks of compiling and running the programs.

Observe the format of the output value 420{3}%{}. This value is /labeled and consists of three
parts: the base value 42, the security label of the value after the @ sign, and the security label of
the type after the % sign. Here, {} that means the lowest security level.

3.2 OVERVIEW OF THE BASIC LANGUAGE

At the very core of Troupe is a dynamically typed functional programming language without
mutable references. For example, a Fibonacci function in Troupe is written exactly as in SML
sans type annotations.

(¥ basic_fib.trp *)
let fun fib x =
if x > 2 then fib (x - 1) + fib (x - 2)
else 1
in fib 10
end

Running this program results in the output
main thread finished with value: 55@{}%{}

Note that Troupe is dynamically typed. For example, a program such as 1 + () results in a
runtime type error

Runtime error in thread b279c491-4509-48e0-82fa-15f18de960030@{}%{}
value ()@{} is not a number

3.3 TYPES AND VALUES

Troupe has the following types:

Unit Unit type with the unit value ().
Booleans Boolean type with literals true and false.
Number Number type.

String String type. String literals are created by placing text between double quotes, e.g., "hello,
world".

Tuple Tuple aggregate, e.g., ("hello", (), true, 42).
List List aggregate, with empty list denoted as [].

Function Function type. Function values are created either using fn x => e syntax or using the
let-fun declarations (cf. Sec[3.5.4).

Process Id Process identifier (cf. Section[3.7).
Label Security label (cf. Section 4.
Authority Declassification capability (cf. Section {4.3).

Note that strings are also used for referring to node identities.

3.4 BASIC OPERATIONS

Troupe supports basic arithmetic and comparison operations on numbers. The comparison is also
extended to strings. Aggregates support equality checks that is defined as point-wise equality of

their elements. Boolean conjunction is andalso, and boolean disjunction is orelse. List cons
operation is : : and string concatenation is ~.

3.5 THREAD-LOCAL CONTROL FLOW

Troupe uses SML-like syntax for thread-local operations. A reader familiar with SML may skip
this subsection and proceed to Section [3.6]

3.5.1 If expressions

Conditionals have the form if e0 then el else e2, where €0 is the guard of the conditional.
The branch el is chosen if e0 evaluates to true; otherwise, the branch e2 is chosen.

3.5.2 Case expressions

Case expressions have the form

case e of
pat_1 => e_1
| pat_2 => e_2
I

| pat_n => e_n

Here, pat_1, ..., pat_n are the patterns that are matched against the expression e, and the e_1, ...,
e_n are the expressions to evaluate. Patterns range over literals, including (), booleans, numbers,
and string literals, as well as the aggregate constructors, and the wildcard pattern _.

3.5.3 Let expressions

Let expressions are used for binding names to values. The basic value binding uses the let val
syntax. Several binding may appear in one block, and references to the earlier bindings in the
block are allowed.

let val x = 20
val y = x + 2
in x + y

end

3.5.4 Function declarations

Functions are declared using 1et fun syntax. Mutually recursive functions are delimited using
the and keyword.

(* basic_evenodd.trp *)

let fun even x = if x = 0 then true else odd (x - 1)
and odd x = if x = 0 then false else even (x - 1)

in even 7

end

Function application has the form e0 el. Curried function declarations and partial application is
supported, e.g.:

let fun add2 x y = x + y
val inc = add2 1

in inc 10

end

3.6 LIBRARIES

Troupe has a minimal support for built-in libraries. Current libraries include a library lists
for common list manipulations, library declassifyutil for declassification of aggregate data
structures, and library stdio with convenient wrappers for standard input and output. To use a
library, one needs to import it with an import statement at the top of the program.

(¥ basic_lib.trp *)
import lists
printWithLabels (map (fn i => i + 1) [1,2,3])

3.7 CONCURRENCY
3.7.1 Spawning processes
New processes are created using spawn function that takes as its argument a unit-argument func-

tion. It return the process identifier of the new process, and starts the new process that from now
on runs concurrently with the parent process.

(* basic_spawn.trp *)
import lists

let fun printwait x = let val _ = printWithLabels x in sleep 10 end
fun foo () = map printwait [1,2,3]
fun bar () = map printwait ["A", "B", "C"]

in (spawn foo, spawn bar)

end

Execution of this program yields the following output:

main thread finished with value: (aeO7ebcc-8a36-401e-b755-ff2393588c870{}%{7},
ed165abd-acb0-4c6e-9843-29d9f263c6da@{}%{}) e{}%{}

1e{}%{}

"Are{}/{}

20{}/{}

"B"e{}%{}

3e{}%{}

"cre{}i{}

3.7.2 Sending and receiving messages

Process communication in Troupe happens via message passing. Every process has a designated
mailbox, and other processes may send messages to that mailbox. Only the process that owns the
mailbox may pick the messages from it.

To send a message to another process, we use function send that accepts as its argument a tu-
ple of a process identifier and a value to send. To receive a message from the mailbox, we use
function receive that accepts as its argument a list of handlers that select a message from the
mailbox.

(¥ basic_receive.trp x*)
let fun foo () =

receive [hn x => printWithLabels ("foo_,received", x)I]
val p = spawn foo
in send (p, "hello")
end
Handlers In the example above, the expression hn x => ... is a handler. Handlers are used

for selecting messages from the mailbox. The syntax for handlers is
hn pat when e; => ep

Here, pat is the pattern to match, e; is the guard expression, and ey is the body of the handler. The
guard part of the handler (when e;) may be omitted. When several handlers are provided they are

used in the order they appear in the list. Finally, note that, on each invocation of receive, only
one message is selected. Subsequent selection requires another call to receive. Finally, note that
handlers are first class (see also the implementation note below).

Constraints on the guard expressions Evaluation of pattern and guard expressions is sand-
boxed — it may not invoke I/O operations, or spawn threads.

Implementation note Internally, handlers are desugared into a function with a case expression
that returns a tuple such that the first element of the tuple indicates whether the message should
be picked or not, and the second element is the body of the handler wrapped in a function, e.g., a
value of the form fn () => e,.

3.7.3 Example: receive with a timeout

The following listing illustrates a program that implements receive with a timeout. In the code
below, the primitive sleep suspends the execution of the thread for the specified number of mil-
liseconds, while the primitive mkuuid creates a unique string. The use of the unique string avoids
creating a confusion when multiple timeouts may be involved.

(* basic_timeout.trp *)

let fun timeout p r t = let val _ = sleep t
in send (p, r)
end
val p = self ()
val r = mkuuid ()
val = spawn (fn () => timeout p r 1000)

in receive [hn ("MESSAGE", x) => print x
, hn s when s = r => print "timeout"
]

end

3.7.4 Example: updateable service

The listing below presents an example of an updateable service — this is implemented by having a
dedicated handler selecting on messages with the "UPDATE" string.

(* basic_updateableserver.trp *)
import timeout
let fun v_one n =
receive [hn ("REQUEST", senderid) =>

let val _ = send (senderid, n)
in v_one (n+1)
end
, hn ("UPDATE", newversion) => newversion n
]
val service = spawn (fn () => v_one 0)
val _ = send (service, ("REQUEST", self ()))
val _ = receive [hn x => print x]

10

fun v_two n =
receive [hn ("REQUEST", senderid) =>

let val _ = send (senderid, n)
in v_two (n+1)
end
, hn ("COMPUTE", senderid, f, x) =>
let val _ = send (senderid, f x)
in v_two (n+1)
end
, hn ("UPDATE", newversion) => newversion n
]
val _ = send (service, ("UPDATE", v_two))
val _ = send (service, ("COMPUTE", self(), fn x => x * x, 42))
val = receive [hn x => print x]

in exitAfterTimeout authority 1000 O
"forceyterminating,theserver examplejafter ls"
end

The evaluation of this program results in the output

0e{}%{}

17640{}%{}

main thread finished with value: (Q@{}%{}
force terminating the server example after 1s

3.8 DEBUGGING CONCURRENT PROGRAMS

To help debugging concurrent programs, one can use a special primitive _setProcessDebuggingName
that takes a string argument and uses that string when reporting errors in the process. By design,
there is no mechanism for reading the process name other than causing an error; this prevents
using process names to leak information.

4 INFORMATION FLOW CONTROL

This section presents the inner workings of Troupe’s security monitor. The monitor is fail-stop at
the granularity of individual processes: monitor violation in a process terminates that process but
does not affect other processes or nodes.

The monitor is designed to enforce a variant of progress-sensitive noninterference with declassi-
fication. Progress-sensitive baseline is chosen because Troupe is a concurrent system that runs
untrusted code, making it possible to amplify leaks via progress/termination, e.g., by designating
a process per bit. In a dynamic system, such as Troupe, a progress leak may stem from several
sources that includes divergence, blocking on input, or a runtime crash, such as evaluating the term
1 + (). All information flow violations result in termination of a process, unless the process is
sandboxed.

11

4.1 PRIVILEGED OPERATIONS AND AUTHORITY

Troupe provides a set of privileged operations such as declassifications or process registration. All
privileged operations require special authority values.

Authorities in Troupe are capabilities and are unforgeable. Operationally, authority is an encap-
sulated security level that we dub efficacy of an authorityﬂ The higher the efficacy level the more
powerful is the authority. System-wide privileged primitives, such as register in the echo-server
example require the top authority, while declassification operations may use attenuated authority.
Attenuation happens in one of the following two ways.

1. Programmatic attenuation takes place via a dedicated primitive attenuate. For example,
expression attenuate(authority, ‘{alicel}‘) returns authority value with efficacy
‘{alice}‘. Programmatic attenuation helps programmers apply the principle of least priv-
ilege, for example, when passing authority to untrusted code that is allowed to perform some
(but not all) declassifications.

2. Troupe runtime attenuates all levels and authority efficacies in remotely received data from
£t0 011 €ypyst, Wwhere £y g s the trust level of the sending node.

In the beginning of program execution, Troupe runtime binds the top authority to the variable
authority in the main program. This variable, however, is not in the scope of the code imported
from libraries or received over the network. Such code needs to obtain authority explicitly.

4.2 MONITORING FOR INFORMATION FLOW

Labeled values Every value in Troupe is deeply labeled with confidentiality levels. The se-
curity level of a value specifies the confidentiality policy of the value. Troupe uses the syntax
VO {lygi} % {liype} ¢ to denote that the value v has security level £, and the information about
the type of this value is labeled at £y,..

A labeled value can be created using Troupe’s raisedTo primitive. Troupe’s runtime propagates
labels throughout the computation. This section presents examples of label propagation via ex-
plicit flows, implicit flows, and finally via termination and blocking.

Explicit flows The following example shows how to create labeled values and how explicit de-
pendencies are propagated.

(*x ifc_explicit.trp *)

let val x = 10 raisedTo ‘{alicel}‘
val y = 20 raisedTo ‘{bobl}

in x + y

end

main thread finished with value: 30@{alice,bob}%{}

Relationship between type and value labels Observe how the result of this computation is
labeled with the level ‘{alice,bob}‘, but the type label is ‘{}‘. Because information about the
value is more precise than the information about the type, it holds that £;,,. T €.

%In standard nomenclature this is simply “authority level”. However, because authorities in Troupe are values with
the corresponding value and type levels, we use a different term to avoid confusion.

12

Labels as values and label comparison Labels in Troupe are first-class:

(¥ ifc_labels.trp *)
import lists
map (fn (x,lev) => x raisedTo lev) [(1, ‘{alicel}*)
, (2, “{bobl} ")
, (3, ‘{charlie}‘)]

>>> Main thread finished with value: [1@{alicel}%{}, 20@{bob}%{},
30{charlie}%{}1e{}%{>

Implicit flows Conditionals propagate the flows as well:

(* ifc_implicitl.trp *)

let val x = 10 raisedTo ‘{alicel}®
in if x > 5 then 1 else O
end

main thread finished with value: 1@{alicel}¥%{alice}

Observe how the final value carries the dependency of the branch that has been chosen here.
Because, of the dynamic nature of type checking, we also carry the information about the chosen
branch into the type label.

Implicit flows and I/O The implicit information flows are further propagated between pro-
cesses. In the mailbox, each message is additionally tagged with a label that corresponds to the
blocking level of the sender at the time when the message was sent. Troupe supports filtering
messages based on these tags. In the following example, rcvp is a form of receive statement that
selects messages where the pc-tag set to the provided label argument.

(* ifc_implicit2.trp x*)

let val x = 10 raisedTo ‘{secretl}®
val p = self ()
val _ = spawn (fn () => if x > 0

then send (p, 1)
else send (p, 0))
in rcvp (‘{secret}‘, [hn x => x 1)
end

main thread finished with value: 10@{secretl}%{secret}

Termination and blocking flows In addition to tracking implicit flows via control flow, Troupe
also tracks possible leaks via program termination or blocking. The sources of blocking are all
synchronous operations such as receive statements or reading from standard input. Each thread
has two runtime labels: the program counter label pc, and the blocking (termination) label block.
It is always the case that pc T block. To view the labels there is a helper internal function
debugpc().

(¥ ifc_debugpc.trp *)
let val x = 1 raisedTo ‘{secret}‘
val debugpc ()

13

val x = if x > 2 then receive [] else ()
val _ debugpc ()

in)

end

Each call to debugpc prints out the information about the process identifier, the pc label, and the
blocking label.

PID:2dfe86ae-6bf3-4bfc-8a0c-200230e0296c@{}%{} PC:{} BL:{}
PID:2dfe86ae-6bf3-4bfc-8a0c-200230e0296c@{}%{} PC:{} BL:{secret}

As one can see from the output above, the pc label after the conditional statement is lowered back
to ‘{}°, but the blocking label remains tainted with the label of the branch. The distinction between
the two labels is helpful when declassifying the blocking label (cf. Section4.3.3).

Implementation note Troupe implements information flow enforcement via inlining.

4.3 DECLASSIFICATION AND PROGRESS-SENSITIVITY

To relax the constraints imposed by the information flow control, Troupe offers a mechanism for
declassification.

In Troupe, declassifying information requires a capability to declassify, known as the declassifica-
tion authority. The authority carries a security level that is the upper bound on what information
it can declassify. Given a value at level £, an authority of level £, permits a declassification
to level £y, if Lo & Lo U L quih-

4.3.1 Example with attenuation of authority

Authority can be attenuated using the attenuate primitive.

(¥ ifc_attenuate.trp x*)
attenuate (authority, ‘{alicel}®)

>>> Main thread finished with value: !'{alice}@{}%{}

4.3.2 Basic declassification

Troupe provides an explicit declassification command declassify that takes three arguments: the
expression to declassify, the authority, and the target label. For example, a basic declassification
looks like this.

(¥ ifc_declassify_atten.trp *)

let val x = 10 raisedTo ‘{alicel}‘
in declassify (x , authority, ‘{}°)
end

When authority for declassification is not sufficient, Troupe returns an error message.

14

(¥ ifc_declassify_err.trp x*)

let val authAlice = attenuate (authority, ‘{alicel}‘)
val x = 1 raisedTo ‘{bobl}°

in declassify (x, authAlice, ‘{}*)

end

Runtime error in thread b469cbef-16d3-4fe8-acle-bd21c7e8950d@{}%{}
>> Not enough authority for declassification

| level of the data: {bob}

| level of the authority: {alice}

| target level of the declassification: {}

4.3.3 Declassification of the blocking level

The treatment of the blocking and termination labels is often restrictive in practice. To relax this,
Troupe provides declassification of the blocking label. This is done using a variant of the let
declaration that is called let pini. This statement requires the authority argument to declassify
the blocking label after the sequence of the declarations (i.e., just before the in block). These
declarations are accessible in the body of the let statement at permissive levels.

(* ifc_pini.trp *)

let val x = 10 raisedTo {alice}
val y = 0
val z =
let pini authority
val _ = if x > 1000 then receive [] else ()
val z = y + 1
val _ = debugpc ()
in z
end
val _ = debugpc()
in =z
end
PID:54bd148b-912e-4ae9-9787-aaf1166e9bc9@{}%{} PC:{} BL:{alice}
PID:54bd148b-912e-42e9-9787-aaf1166e9bc90{}%{} PC:{} BL:{}

>>> Main thread finished with value: 10{}%{}

Observe that in the above program, the level of the final value z is not tainted by the blocking label
of the high conditional.

Implementation note The expression let pini e0 decs in el end is desugared by the com-
piler frontend into the form

let val tmp = pinipush €O
decls
val _ = pinipop tmp
in el
end

Here, tmp is a fresh variable that is not part of the user program. Primitives pinipush and

15

pinipop dynamically scope the part of the execution for which the blocking label is declassi-
fied.

Implicit flows and type labels Type labels of values created in branches are also tainted by
the pc-label. Operations that check the type label, e.g., arithmetics or pattern matching, use the
information in the type label to appropriately taint the blocking level. the value.

(¥ ifc_type_labels.trp *)
let val x = 100 raisedTo {alice}

val y = 200 raisedTo {bob}
val z = 300 raisedTo {charlie}
val a = let pini authority
val a = if y > 10 then z else "notpanginteger"
in a
end
val _ = printWithLabels a
val _ = debugpc()
val w = a + x
val _ = printWithLabels w
in debugpc ()

end

3000{charlie,bob}%{bob}

PID:2dfdc81f-1027-40e2-810c-11fadb2dd40f@{}%{} PC:{} BL:{}
4000{charlie,bob,alice}%{}
PID:2dfdc81f-1027-40e2-810c-11fadb2dd40f@{}%{} PC:{} BL:{bob}

4.4 INFORMATION FLOW CONTROL WITH I/O PRIMITIVES

This section may be omitted upon first read as it has a number of information flow subtleties that
can be omitted when first starting to use the system.

4.4.1 Generalized receive and mailbox clearances

I/O operations such as send and receive introduce additional concerns w.r.t. information flow
control. In particular, because mailbox acts as a mutable state, an extra care needs to be taken to
control information flows through the mailbox structure.

Every message in a mailbox carries an extra label — the blocking level of the sender. We refer
to this extra label as the presence label. Receiving a value furthermore propagates the taint of
the blocking level from the sender to the receiver via the presence label. In order to constrain a
receive operation from an accidental raise of the blocking level, Troupe provides a general receive
primitive in the form rcv(levl, lev2, hns). Here, 1lev1 and lev2 indicate the to and from-levels
of the presence labels on the messages, and hns is the list of handlers as before. The receive
operation we introduced earlier is equivalent to rcvp at the level of the current pc label.

While such a form of general receive over an interval of levels is useful, it is also too powerful and
needs to be further constrained. Consider the following snippet

let val _ = if secret then rcv ({}, {alice}, [hn x => x])
else ()

16

in rev ({}, {}, [hn x => x])
end

Because the receive in the high branch is on an interval, the value of x may depend on the secret
value. In general, one can encode an entire secret in the structure of the mailbox. To prevent
such programs, Troupe provides a special notion of mailbox clearance that constrains receives
on an interval. The mailbox clearance is a proxy for an authority. It can be raised using a dedi-
cated command raisembox(lev) that returns a lowering capability and lowered with command
lowermbox(c,authority). There are a few constraints related to the mailbox clearance.

1. In order to receive on an interval (¢, £2) under pc with mailbox clearance £, it must hold
that /o L pc E £1 L £ jeqr. This constraint ensures that the mailbox clearance is sufficient for
the interval receives. When mailbox clearance is L — as it is in the beginning of the program
— only point intervals of the form (¢, ¢) where pc C ¢ are allowed.

2. The pc-label of the program point where the mailbox clearance is raised affects the lower
bound of the intervals. In particular, if the clearance is raised when the pc counter is pc
the mailbox structure cannot be influenced by receives that are not as restrictive as pc
in other words: pc C pc M4y, where £; is the lower bound of the interval receive.

raise’
raise?
raise

3. If the process mailbox clearance is raised in a branch, it must be lowered back before reach-
ing the join point of the branch.

5 NETWORKING

5.1 NETWORK IDENTITY

Troupe’s runtime connects to a distributed p2p system. Each instance of the runtime is associated
with a network node that uses a unique network identifier. The identifier information is typically
stored in files, and is provided as arguments to the runtime at startup.

$TROUPE/rt/troupe out.js --id=<path_to_id_file>
If no arguments are provided, the runtime generates a fresh identifier at startup.

5.1.1 Registering and looking up processes

Node identifiers can be used to register and look processes up. Consider a simple echo service:

let val _ = register ("echo", self (), authority)
fun loop () =
let val _ = receive [hn ("ECHO", x, sender)
=> send (sender, ("REPLY", x))
, hn _ => (O 1]
in loop O
end
in loop ()
end

17

The register primitive is used to bound a process to a name. Because this is a system-wide
operation, it requires the top authority argument. If we know the node identity and the name at
which a process is bound, we can find the process at that node, using the whereis primitive:

let val echo =
whereis ("QmNRwNZACPcilLS14cZFApwrCcAdbRAXYgztea9mbXwRe4dz"

, "echo")
val _ = send (echo, ("ECHO", "Hello", self()))
in receive [hn x => print x]

end

The complete echo example — including the code above and the scripts for generating the identifiers
is available at $TROUPE/examples/network/echo.

5.1.2 Aliases

Aliases is a mechanism that allows us to avoid having hardcoded node identifiers in the source
code. The alias mechanism operates in the way of the traditional Unix hosts files. To use this
mechanism, we need to provide the path to a special alias file that contains a mapping between
alias strings and network identifiers. In the text of the program, an alias string must start with
character "@".

$TROUPE/rt/troupe out.js --aliases=<path_to_aliases_file>

5.2 NODE TRUST LEVELS

By default, all nodes in Troupe are mutually distrusting. This means that information sent and
received to other nodes is considered to be at level ‘{}‘. We can increase trust in certain nodes by
passing a trust map file that include the identity of the nodes and their maximum trust level.

5.3 REMOTE SPAWNING

If we know of a node identifier, we can spawn a thread on that node. Remote spawning is disabled
by default, and needs the flag ——rspawn=true to be enabled. To spawn a process on a remote
node, the spawn takes a tuple of arguments, where the first parameter is the string corresponding
to the node identifier of the remote machine.

5.4 INFORMATION FLOW MONITORING AND ATTENUATION

When information at level £4,;, is sent to a remote node with trust level £, the runtime per-
forms the check £ 4,10 T £4rust to ensure that no sensitive information flows to a that can violate
confidentiality. Because we have no way of enforcing the information flow on the remote node,
this also means that trust relationship between nodes is transitive.

When receiving information from a remote node at level £4.,:, data labeled at level £ receives the
actual level £, M £. This ensures that the runtime is not accidentally tainted by nodes that have
low (or none at all) trust.

Authority values that are transferred across the nodes are subject to the same constraints and
attenuation.

18

A LANGUAGE REFERENCE

A.1 BUILT-IN EXPRESSIONS
A.d1.1 adv

Description Simulate sending a value to adversary at level {}. This function is introduced as a
pedagogical convenience as as it removes the necessity to set up a network process when
explaining explicit and implicit information flows.

Arguments A value to pass to the adversary.
Returns Unit.

Failure behavior Crashes the current process if the provided value and the blocking label are
more restrictive than bottom.

Example usage adv (42 raisedTo {alice}).

A.1.2 attenuate

Description Returns the attenuated authority
Arguments A value of authority type.
Returns A value of authority type

Example usage attenuate(authority,‘{alice}‘) Note that the above example will generate
a runtime error.

A.1.3 authority

Description Return the authority argument implicitly provided to the top-level function of the
main program. The accessibility of this argument follows the standard lexical scoping rules.
In particular, expressions received over the network carry over the (potentially attenuated)
authority of their originating nodes.

Arguments None

A.14 declassify

Description Declassifies an expression.

Arguments A triple of the form (ezpr,authority,¢), where ezpr is the expression to be de-
classified, authority is the authority to use for declassification, and / is the target level of
declassification.

Returns The original value declassified to the target level if there is sufficient authority.

Failure behavior Crashes if the provided authority is insufficient for the declassification.

19

Example usage let val x = 42 raisedTo {alice}
in print (declassify (x, authority, ‘{}°)
end

Al1S5 exit

Description Exits the Troupe runtime.
Arguments A tuple (authority, exitCode).
Returns Nothing

Example usage exit(authority, O0)

A.1.6 getTime

Description Obtains current Unix timestmap
Arguments Unit.
Returns Number.

Example usage getTime ()

A.1.7 inputLine

Description Reads a line from the console.
Arguments Unit.
Returns String value.

Blocking behavior Synchronous. Observe that the blocking label is raised to top after this opera-
tion, because the user providing the input is assumed to operate at level top. To prevent this
from happening, the blocking label can be declassified using the 1et pini constructs. See
also library functions inputLineWithPini and inputLineWithPini from stdio library.

A.1.8 lowermbox

Description Lowers the clearance of the current process’ mailbox.
Arguments A tuple of the raise capability and authority
Returns Unit.

Failure behavior Fails if the type of the argument is invalid (dynamic type checking). Fails if
the authority is insufficient for this lowering, or the provided capability does not match the
stack scoping discipline.

20

A.1.9 mkuuid

Description Generates a random string.
Arguments Unit.
Returns A newly generated string.

Example usage print (mkuuid ())

A.1.10 node

Description Returns node identifier of a process.
Arguments Process identifier.

Returns String containing a node identifier.

A.1.11 pinipop

Description Pop an authority value from the pini stack, and declassify the current blocking level.
Arguments A string generated by pinipush
Returns Unit.

Failure behavior Crashes if the popped authority is insufficient for the declassification of the
blocking level, or if the provided capability does not match to the last capability generated
by the pinipush.

Example usage pinipop ()

A.1.12 pinipush

Description Pushes authority value onto the pini stack.
Arguments A value of type authority.
Returns A string capability to be passed as the argument to pinipop

Example usage pinipush (authority)

A.1.13 pinipushto

Description Pushes authority value onto the pini stack, with explicit blocking level.
Arguments A tuple: a value of type authority, and a level.

Returns A string capability to be passed as the argument to pinipop

Failure behavior Crashes if the current blocking level does not flow to the level argument.

Example usage pinipushto (authority, {bob})

21

A.1.14 print

Description Prints a value on the console omitting its security types.
Arguments A value of any type.
Returns Unit.

Example usage print "Hello, world”

A.1.15 printWithLabels

Description Prints a value on the console including its security types.
Arguments A value of any type.
Returns Unit.

Example usage printWithLabels "Hello,world”

A.1.16 raiseTrust

Description Dynamically raise the trust level of a node.
Arguments A triple of a node identifier, root-level authority, and the intended trust level.
Returns Unit.

Failure behavior . Fails if the argument type is invalid. Fails if the authority argument is not top.
Fails if the blocking level is not L.

Example usage raiseTrust(”@alicescomputer”,authority, {alice})

Note that the top-level authority is required because this is a privileged operation with system-wide
consequences.

A.1.17 raisembox

Description Raises the clearance of the current process’ mailbox.
Arguments A security level
Returns A capability for lowering the mailbox level back to the previous value.

Failure behavior Fails if the type of the argument is invalid (dynamic type checking).

A.1.18 random

Description Generates a random number between O (inclusive) and 1.
Arguments Unit.
Returns Number.

Example usage random()

22

A1.19 receive

Description Picks a message from the mailbox.
Arguments A list of handler functions (cf. Section[3.7.2).

Returns The value returned by the body of the matching handler.

A.1.20 register

Description Registers the process under a name.

Arguments A tuple of the form (str, pid, authority), where str is the name under which the
process is to be registered, pid is the process identifier, and authority is the top authority
value.

Returns Unit.

Blocking behavior Synchronous.

Failure behavior Crashes if the provided authority is not top, or if the blocking level is not L.
Example usage register ("auctionServer", self(), authority)

Note that this is a privileged operation with system-wide consequences.

A1.21 rcv

Description Picks a message from the mailbox with pre-filtering the levels of the messages.

Arguments A triple of the form (hs, ¢;,, 5;) where hs is the list of handlers, ¢, is the lower
bound on the sender-level of the messages, and £y; is the upper bound on the sender-level
of the messages in the mailbox.

Returns The value returned by the body of the matching handler.

A.1.22 sandbox

Description Execute a function in a sandbox for a fixed duration of time.

Arguments A tuple of the form (¢, f), where ¢ is the timeout duration in milliseconds, and f is
the function of the form fn() => e that is executed in the sandbox. A sandboxed process
is heavily restricted: it cannot perform any I/O operations or spawn new threads.

Returns A tuple of the form (ok, val) where ok is either true or false, with true meaning that
the sandbox execution has completed successfully, and false meaning that the sandbox has
exhibited a crash or timeout. When the evaluation succeeds, value val carries the return
value of the sandboxed function; it is a unit value otherwise.

Blocking behavior Synchronous. The execution of the process always takes at least duration ¢,
even if the sandboxed process successfully finishes before that.

Failure behavior This function always succeeds. All internal errors are suppressed.

Example usage sandbox (1000, fn () => 1 + ())

23

Implementation notes Troupe’s current prototype does not yet implement this with high granu-
larity.

A.1.23 self

Description Returns the current process identifier.
Arguments Unit.
Returns The value of process identifier type.

Example usage print (self ())

A.1.24 send

Description Sends a message to a process.

Arguments A tuple of the form (pid,v) where the pid is the process identifier of the recipient
process, and v is the value to send.

Returns Unit.

Failure behavior Crashes the current process if the node hosting the recipient process is untrusted
to receive v. This crashing behavior is exhibited only if the process is hosted remotely. Local
processes are implicitly fully-trusted because the enforcing runtime is the same.

Blocking behavior Asynchronous.
A.1.25 _setProcessDebuggingName

Description Sets the process name that is used in debugging.
Argument A string value.
Returns Unit.

Failure behavior Fails if the type of the argument is invalid (dynamic type checking).

A.1.26 sleep

Description Suspends the execution of the current thread for a specified duration of time.
Arguments One argument of type number that specifies the sleep time in milliseconds.
Returns Unit.

Example usage sleep 100

A.1.27 spawn

Description Spawns a new process locally or remotely.

24

Arguments Either a tuple of the form (nodeid, f) of a node identifier (as a string) and a function
or one argument of the type function. Note that the function must be of the form fn() => e,
i.e., it must take just one unit argument.

Returns The process identifier of the newly spawned process.
Blocking behavior Blocks until the new process is created.

Example usage print (self (), spawn(fn () => print (self())))

A.1.28 raisedTo

Description Raises the level of a value. Observe that this expression uses the infix syntax.
Arguments An expression of any type and a level.
Returns The same expression with its level raised to the provided level.

Example usage 42 raisedTo {alice}

A.1.29 whereis

Description Looks up a registered process on a remote node.

Arguments A tuple of the form (nodeid, name) where nodeid is the string representing the p2p-
identifier of the node, and name is the name of the process registered at that node.

Returns The process identifier of the node on the remote machine.
Blocking behavior Synchronous.

Failure behavior Crashes if the program counter level and the level of the name do not flow to
the trust level of the node.

Example usage let val p = whereis
(' "QmeuSjy8RbeUHpqtDGj2B66fPHxRowuoecZnaVkvhTS7tb"
, "auctionServer")
in send (p, ("BID", 42))
end

B USEFUL STANDARD LIBRARIES

Current installation of Troupe has a minimal set of standard libraries. We briefly describe the most
useful ones here.

B.1 LIBRARY DECLASSIFYUTIL

This library contains some useful functions for deep declassification of tuples and declassifying
both an expression and blocking level at the same time.

25

e declassify with_block(v,auth, lev) takes three arguments — the value to declassify,
the authority, and the target level — just like in normal declassification — and declassifies
both the blocking label and the value.

e (declassifydeep(v,auth, lev) is like abov, but additionally further declassifies nested
lists and tuples up to size nine.

B.2 LIBRARY LISTS

This library contains standard list functions, such as map, mapi, foldi, range, range, reverse,
lookup, elem, length, append, and partition.

26

C INSTALLATION AND CONFIGURATION

C.1 INSTALLATION

See the README file provided with the installation.

C.2 CONFIGURING NETWORK IDENTIFIERS

Create a network identifier (together with the public/private key pair) for your node.
$ curl lbs-troupe.troupe-lang.org/mkid -o my-identifier.json

The "id" section of the JSON file is your identifier. The other parts correspond to the private and
public keys — technically, the identifier is the hash of the public key.

C.2.1 Testing your network identifier (optional)

At this step, you can pass the generated JSON file as an argument to Troupe runtime, using the
--id flag. See the echo example provided with the installation.

27

	Introduction to Troupe
	Background and influence
	Intended audience

	System architecture
	Troupe architecture
	Tag-based label model

	Basic features
	A minimal Troupe program
	Overview of the basic language
	Types and values
	Basic operations
	Thread-local control flow
	If expressions
	Case expressions
	Let expressions
	Function declarations

	Libraries
	Concurrency
	Spawning processes
	Sending and receiving messages
	Example: receive with a timeout
	Example: updateable service

	Debugging concurrent programs

	Information flow control
	Privileged operations and authority
	Monitoring for information flow
	Declassification and progress-sensitivity
	Example with attenuation of authority
	Basic declassification
	Declassification of the blocking level

	Information flow control with I/O primitives
	Generalized receive and mailbox clearances

	Networking
	Network identity
	Registering and looking up processes
	Aliases

	Node trust levels
	Remote spawning
	Information flow monitoring and attenuation

	Language reference
	Built-in expressions
	adv
	attenuate
	authority
	declassify
	exit
	getTime
	inputLine
	lowermbox
	mkuuid
	node
	pinipop
	pinipush
	pinipushto
	print
	printWithLabels
	raiseTrust
	raisembox
	random
	receive
	register
	rcv
	sandbox
	self
	send
	_setProcessDebuggingName
	sleep
	spawn
	raisedTo
	whereis

	Useful standard libraries
	Library declassifyutil
	Library lists

	Installation and configuration
	Installation
	Configuring network identifiers
	Testing your network identifier (optional)

